Longitudinal Fields in a Conducting Cylinder

Consider a uniform round beam:

Field Schematic of Coasting Beam

From ampere's law: $$\nabla \times \vec{E} = -\frac{\partial B}{\partial t} \to \oint \vec{E}\cdot d\vec{l} = -\frac{\partial}{\partial t}\iint_S\vec{B}\cdot d\vec{A}$$ and by defining the following integration path/surface through a round charge distribution: $$\begin{aligned} \oint \vec{E}\cdot d\vec{l} = E_z(r,z)\Delta z + \int_r^bE_r(r', z+\Delta z)dr'-E_z(b, z)\Delta z -\int_r^bE_r(r', z)dr' \end{aligned}$$ and: $$\begin{aligned} -\frac{\partial}{\partial t}\iint_S\vec{B}\cdot d\vec{A} = -\Delta z \frac{\partial}{\partial t}\int_r^bB_{\theta}(r', z) \end{aligned}$$ Using: $$E_r(r', z+\Delta z)-E_r(r', z) = \frac{\partial E_r(r', z)}{\partial z}\Delta z$$ Since $dz = -vdt$: $$\begin{aligned} E_z(r,z)-E_z(b,z)&= -\int_r^b\left[\frac{\partial E_r(r', z)}{\partial z}+\frac{\partial B_{\theta}(r', z)}{\partial t}\right]dr'\cr &=-\frac{\partial}{\partial z}\int_r^b[E_r(r',z)-vB_{\theta}(r',z)]dr'\cr &=-\frac{\partial}{\partial z}\int_r^b[E_r(r',z)-\beta^2E_r(r',z)]dr' \end{aligned}$$ Therefore: $$E_z(r,z) = E_z(b,z)-(1-\beta^2)\frac{\partial}{\partial z}\int_r^bE_r(r',z)dr'$$

The longitudinal self fields for a beam in a conductive pipe of radius b are:

\[\boxed{E_z(r, z) = -\frac{1}{\gamma^2}\frac{\partial}{\partial z}\int_r^bE_r(r', z)dr'}\]

Radial Fields in Cylindrical Bunches

Considering a cylindrical bunch defined by it’s linear charge density $\lambda(z)$, a gaussian element of length $\Delta z$ located at $z$ is defined by:

\[Q = \lambda(z) \Delta z\]

Integration Surfaces to Compute Radial Fields in Cylindrical Beam

We can define $f(r)$, the proportion of charge enclosed in a cylindrical area of radius $r$ can given by the radial charge density $\rho(r)$:

\[f(r) = \frac{\int_0^r \rho(r') r' dr'}{\int_0^\infty \rho(r') r' dr'} = \frac{Q_{enc}}{Q}\]

Therefore:

\[Q_{enc} = f(r) Q = f(r)\lambda(z) \Delta z\]

From an gaussian cylinder of length $\Delta z$ and radius $r$, we deduce from:

\[\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \rightarrow \int_S \vec{E}\cdot d\vec{A} = \frac{Q_{enc}}{\epsilon_0}\]

That:

\[\vec{E_r}(r) \cdot 2\pi r \Delta z = \frac{f(r) \lambda(z)\Delta z}{\epsilon_0}\]

The longitudinal self fields for a round beam in a conductive pipe of radius b is given by:

\[E_z(r, z) = -\frac{1}{\gamma^2}\frac{\partial}{\partial z}\int_r^bE_r(r', z)dr'\]

The radial fields for a slowly varying coasting beam are:

\[E_r(r, z) = \frac{\lambda(z)}{2\pi\epsilon_0}\frac{f(r)}{r}\]

Accordingly our longitudinal fields are defined by:

\[\boxed{E_z = -\frac{\bar{g}}{2\pi\epsilon_0\gamma^2}\frac{\partial \lambda}{\partial z}}\]

Where the geometry factor $\bar{g}$ is defined by:

\[\bar{g} = \int_r^b\frac{f(r')}{r'}dr' \qquad f(r) = \frac{\int_0^r \rho(r') r' dr'}{\int_0^\infty \rho(r') r' dr'} = \frac{Q_{enc}}{Q}\]

Round Beam Profiles

Uniform Round Beam

A uniform charge distribution in a cylindrical beam is defined by constant surface charge density: $$\rho(r) = \sigma = \frac{Q}{\pi a^2}$$ For $r < a$: $$f(r) = \frac{r^2}{a^2}$$ $$E_r(r, z) = \frac{\lambda(z)}{2\pi\epsilon_0}\frac{r}{a^2}$$ For $r > a$: $$f(r) = 1$$ $$E_r(r, z)=\frac{\lambda(z)}{2\pi\epsilon_0}\frac{1}{r}$$

Our geometric factors are therefore:

\[\begin{aligned} g(r<a) &= \int_r^a \frac{r'}{a^2}dr'+\int_a^b\frac{1}{r'}dr'\cr &= \frac{1}{2}\frac{r'^2}{a^2}\Big|_r^a + \ln(r')\Big|^b_a \cr &= \frac{1}{2} - \frac{1}{2}\frac{r^2}{a^2} + \ln\left(\frac{b}{a}\right)\cr \end{aligned}\]

and:

\[g(r>a) = \int_r^b\frac{1}{r'}dr' = \ln\left(\frac{b}{r}\right)\]

Parabolic Round Beam

We can define a radial parabolic charge distribution of width $a$ with the following: $$\rho(r) = \frac{2Q}{\pi a^2}\left(1-\frac{r^2}{a^2}\right)$$ Accordingly: $$Q = \int_0^a \rho(r) r dr d\theta$$ We can then define our relative enclosed charge $f(r)$. For r < a: $$\begin{aligned} f(r) &= \frac{2\pi}{Q}\int_0^r\rho(r')r'dr' \cr &= \frac{4}{a^2}\int_0^rr'(1-\frac{r'^2}{a^2})dr'\cr &= \frac{4}{a^2}\left(\frac{r'^2}{2}\Big|_0^r -\frac{r'^4}{4a^2}\Big|_0^r\right)\cr &= \frac{4}{a^2}\left(\frac{r^2}{2}-\frac{r^4}{4a^2}\right)\cr &= 2\frac{r^2}{a^2}-\frac{r^4}{a^4} \end{aligned}$$ For r > a: $$f(r) = 1$$ Therefore our geometric factor is defined by:
\[\begin{aligned} g(r<a) &= \int_r^a \frac{1}{r'}\left(2\frac{r'^2}{a^2}-\frac{r'^4}{a^4}\right)dr'+ \int_a^b\frac{dr'}{r'}\cr &=\frac{r'^2}{a^2}\Big|_r^a-\frac{r'^4}{4a^4}\Big|_r^a + \ln\left(r'\right)\Big|_a^b\cr &= \ln\left(\frac{b}{a}\right) + \frac{a^2-r^2}{a^2} - \frac{a^4-r^4}{4a^4} \end{aligned}\]

and:

\[g(r>a) = \int_r^b\frac{1}{r'}dr' = \ln\left(\frac{b}{r}\right)\]

Gaussian Beam:

Given a radial charge distribution is defined by: $$\rho(r) = \frac{Q}{\sigma_r^2(\sqrt{2\pi})^2}\exp\left(-\frac{r^2}{2\sigma_r^2}\right)$$ Therefore our form factor $f(r)$: $$f(r) = \frac{\int_0^r\rho(r')r'dr}{\int_0^\infty \rho(r')r'dr} = \frac{1}{2\pi}\int_0^r r'\exp\left(-\frac{r'^2}{2\sigma_r^2}\right)dr' = 1-\exp\left(-\frac{r^2}{2\sigma_r^2}\right)$$ Therefore: $$\begin{aligned} g(r) &= \int_r^b\frac{1}{r'}\left(1-\exp\left(-\frac{r'^2}{2\sigma_r^2}\right)\right)dr'\cr &=\int_r^b\frac{dr'}{r'} -\int_r^b\frac{1}{r'}\exp\left(-\frac{r^2}{2\sigma_r^2}\right)dr'\cr &= \ln(r')\Big|_r^b -\frac{1}{2}\text{Ei}\left(-\frac{r'^2}{2\sigma_r^2}\right)\Big|_r^b\cr &= \ln\left(\frac{b}{r}\right)-\frac{1}{2}\left(\text{Ei}(-\frac{b^2}{2\sigma_r^2})-\text{Ei}(-\frac{r^2}{2\sigma_r^2})\right) \end{aligned}$$ Where the exponential integral $\text{Ei}$ is defined by: $$\text{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t}dt$$ Our maximum value occurs at: $$g(0) = \frac{1}{2}\left(\ln\left(\frac{b^2}{2\sigma_r^2}\right)+\Gamma(0, \frac{b^2}{2\sigma_r^2}+\gamma\right)$$ Where: $$\Gamma(a, x) = \frac{1}{\Gamma(a)}\int_0^xt^{a-1}e^{-t}dt$$ and: $$\gamma = \lim_{n\to\infty}\left(-\ln n +\sum_{k=1}^n\frac{1}{k}\right) \approx 0.57721$$
\[\boxed{g(r) = \ln\left(\frac{b}{r}\right)-\frac{1}{2}\left(\text{Ei}(-\frac{b^2}{2\sigma_r^2})-\text{Ei}(-\frac{r^2}{2\sigma_r^2})\right)}\]

Summary

In summary we have the following geometric factors:

profile $\rho(r)$ $g(r <a)$ $g(r > a)$ $g(r=0)$
uniform $\frac{1}{\pi a^2}$ $\ln\left(\frac{b}{a}\right) + \frac{1}{2} - \frac{1}{2}\frac{r^2}{a^2}$ $\ln\left(\frac{b}{r}\right)$ $\ln\left(\frac{b}{a}\right) + \frac{1}{2}$
parabolic $\frac{2}{\pi a^2}\left(1-\frac{r^2}{a^2}\right)$ $\ln\left(\frac{b}{a}\right) + \frac{a^2-r^2}{a^2} - \frac{a^4-r^4}{4a^4}$ $\ln\left(\frac{b}{r}\right)$ $\ln\left(\frac{b}{a}\right) + \frac{3}{4}$
gaussian $\frac{\exp\left(-\frac{r^2}{2\sigma_r^2}\right)}{2\pi\sigma_r^2}$ $\ln\left(\frac{b}{r}\right)-\frac{1}{2}\left[\text{Ei}\left(\frac{-b^2}{2\sigma_r^2}\right)-\text{Ei}\left(\frac{-r^2}{2\sigma_r^2}\right)\right]$ $\frac{1}{2}\left(\ln\left(\frac{b^2}{2\sigma_r^2}\right)+\Gamma(0, \frac{b^2}{2\sigma_r^2}+\gamma\right)$

We can visualize these distributions and geometric factors below:

Charge Profiles with Subsequent Geometric Factors

We observe that the resulting geometric factors used to represent the self fields of particles in or outside equivalently sized uniform, parabolic or gaussian are mostly equivalent.