Transverse Motion
Betatronic Motion
The transverse position of a particle $u$ along longitudinal coordinate $s$ is described by
\[u(s) = \sqrt{\beta(s)\epsilon}\cos\phi+D\delta\]where $\beta$ and $D$ are the beta and dispersion functions respectively. The transverse phase advance is given by
\[\phi = \mu(s) + \mu_0\]where $\mu_0$ is an integration constant and
\[\mu(s) = \int_0^s\frac{ds}{\beta(s)}.\]Effective Geometry Factor
For a particle within a uniform transverse bunch distribution in a long round beam, the longitudinal space charge fields can be described by the following geometry factor
\[g(r) = \begin{cases}\frac{1}{2}+\ln\frac{b}{a}-\frac{1}2{}\frac{r^2}{a^2} & r < a \\ \ln \frac{b}{r} & r > a \end{cases}.\]If we approximate that
\[\beta(s)\approx \beta \qquad D(s) \approx D\]we can determine that
\[\overline{r^2} = \frac{\beta}{2}(\epsilon_x +\epsilon_y)+D^2\delta^2\]and that
\[\bar{a} = 2\sqrt[4]{(\beta\sigma_\epsilon+D^2\sigma^2_\delta)(\beta\sigma_\epsilon)}\]Accordingly
\[\bar{g}(X,Y)=\frac{1}{2}+\ln\frac{b}{\bar{a}(Y)}-\frac{1}{2}\frac{\overline{r^2}(X)}{\bar{a}^2(Y)}\]where
\[X \in (\delta, \epsilon_x, \epsilon_y) \qquad Y \in (\sigma_\epsilon, \sigma_\delta)\]are evaluated at each turn.